6 research outputs found

    Planar-type silicon thermoelectric generator with phononic nanostructures for 100 {\mu}W energy harvesting

    Full text link
    Energy harvesting is essential for the internet-of-things networks where a tremendous number of sensors require power. Thermoelectric generators (TEGs), especially those based on silicon (Si), are a promising source of clean and sustainable energy for these sensors. However, the reported performance of planar-type Si TEGs never exceeded power factors of 0.1 μWcm2K2{\mu} Wcm^{-2} K^{-2} due to the poor thermoelectric performance of Si and the suboptimal design of the devices. Here, we report a planar-type Si TEG with a power factor of 1.3 μWcm2K2{\mu} Wcm^{-2} K^{-2} around room temperature. The increase in thermoelectric performance of Si by nanostructuring based on the phonon-glass electron-crystal concept and optimized three-dimensional heat-guiding structures resulted in a significant power factor. In-field testing demonstrated that our Si TEG functions as a 100-μW{\mu}W-class harvester. This result is an essential step toward energy harvesting with a low-environmental load and cost-effective material with high throughput, a necessary condition for energy-autonomous sensor nodes for the trillion sensors universe

    Synergistic Enhancement of Cellular Uptake With CD44-Expressing Malignant Pleural Mesothelioma by Combining Cationic Liposome and Hyaluronic Acid-Lipid Conjugate

    Get PDF
    Malignant pleural mesothelioma (MPM) is a highly aggressive form of cancer, with a median survival of less than 1 year. It is well known that the hyaluronan (HA) receptor CD44 is highly expressed by MPM cells and is reported to be correlated with a poor prognosis. We herein report on the development of a new type if drug delivery system against CD44 that involves the use of lipid nanoparticles (LNPs) equipped with a new type of HA derivative. In this study, we evaluated HA-lipid conjugation (HAL) via the end of the HA molecule through reductive amination, a process that allowed the carboxylate group to remain intact. As a result, the HAL-modified LNP appears to be a potent nanoparticle for dealing with MPM. Surprisingly, the use of a combination of a cationic lipid and HAL had a synergistic effect on cellular uptake in MPM and consequently permitted an anti-cancer drug such as cis-diamminedichloro-platinum(II) (CDDP). Intrapleural injection of CDDP-loaded HAL-LNP (1.5 mg/kg as CDDP) per week significantly suppressed the progression of this type of cancer in an MPM orthotopic model. These results suggest that HAL-modified LNP represents a potent delivery system for MPM cells that express high levels of CD44. (c) 2019 American Pharmacists Association (R). Published by Elsevier Inc. All rights reserved
    corecore